Subsoil tillage improved the maize stalk lodging resistance under high planting density

Author:

Feng Xueying,Ma Daling,Lei Tianen,Hu Shuping,Yu Xiaofang,Gao Julin

Abstract

Lodging reduces maize yield and quality. The improvement in maize lodging resistance has proven to be instrumental in maximizing the yield potential of maize varieties under high-density planting. Tillage practices accommodate larger groups by enhancing soil conditions. This study aimed to elucidate the impact of subsoil tillage in reducing the maize stalk lodging rate. The maize cultivars Xianyu 335 (XY335) and Zhongdan2 (ZD2) were selected for field experiments including two tillage methods, shallow rotary (RT) and subsoil (SS), and two densities, 75,000 plants ha−1 (D1) and 105,000 plants ha−1 (D2), were set up to investigate and analyze the changes of maize lodging rate and the related indexes of lodging resistance under SS and RT conditions. The findings revealed that under high density, as compared to rotary tillage, SS tillage decreased the plant and ear height by 9.01–9.20 cm and 3.50–4.90 cm, respectively. The stalk dry matter accumulation was enhanced by 8.98%–24.98%, while stalk diameter between two and seven internodes increased by 0.47– 4.15 mm. Stalk cellulose increased by 11.83% –12.38%, hemicellulose increased by 6.7%–15.97%, and lignin increased by 9.86%–15.9%. The rind puncture and crushing strength improved by 3.11%–20.06% and 11.90%–27.07%, respectively. The bending strength increased by 6.25%–27.96% and the lodging rate decreased by 1.20%–6.04%. Yield increased by 7.58%–8.17%. At SS tillage when density increased, the index changes in ZD2 were mostly less than those in XY335. The rind penetration strength, bending strength, crushing strength, stalk diameter, and dry matter accumulation all had a negative correlation with the lodging rate. It suggested that SS tillage was beneficial to lodging resistance and, in combination with stalk lodging-resistant varieties, can effectively alleviate the problem of stalk lodging after increased planting density.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3