Conservation of an Agrobacterium cT-DNA insert in Camellia section Thea reveals the ancient origin of tea plants from a genetically modified ancestor

Author:

Chen Ke,Zhurbenko Peter,Danilov Lavrentii,Matveeva Tatiana,Otten Léon

Abstract

IntroductionMany higher plants contain cellular T-DNA (cT-DNA) sequences from Agrobacterium and have been called “natural genetically modified organisms” (nGMOs). Among these natural transformants, the tea plant Camellia sinensis var. sinensis cv. Shuchazao contains a single 5.5 kb T-DNA fragment (CaTA) with three inactive T-DNA genes, with a 1 kb inverted repeat at the ends. Camellia plants are allogamous, so that each individual may contain two different CaTA alleles.Methods142 Camellia accessions, belonging to 10 of 11 species of the section Thea, were investigated for the presence of CaTA alleles.Results discussionAll accessions were found to contain the CaTA insert, showing that section Thea derives from a single transformed ancestor. Allele phasing showed that 82 accessions each contained two different CaTA alleles, 60 others had a unique allele. A phylogenetic tree of these 225 alleles showed two separate groups, A and B, further divided into subgroups. Indel distribution corresponded in most cases with these groups. The alleles of the different Camellia species were distributed over groups A and B, and different species showed very similar CaTA alleles. This indicates that the species boundaries for section Thea may not be precise and require revision. The nucleotide divergence of the indirect CaTA repeats indicates that the cT-DNA insertion took place about 15 Mio years ago, before the emergence of section Thea. The CaTA structure of a C. fangchengensis accession has an exceptional structure. We present a working model for the origin and evolution of nGMO plants derived from allogamous transformants.

Funder

Russian Science Foundation

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3