Geographic Variation in the Petiole–Lamina Relationship of 325 Eastern Qinghai–Tibetan Woody Species: Analysis in Three Dimensions

Author:

Li Yanan,Kang Xiaomei,Zhou Jieyang,Zhao Zhigang,Zhang Shiting,Bu Haiyan,Qi Wei

Abstract

The petiole–lamina relationship is central to the functional tradeoff between photosynthetic efficiency and the support/protection cost. Understanding environmental gradients in the relationship and its underlying mechanisms remains a critical challenge for ecologists. We investigated the possible scaling of the petiole–lamina relationships in three dimensions, i.e., petiole length (PL) vs. lamina length (LL), petiole cross sectional area (PCA) vs. lamina area (LA), and petiole mass (PM) vs. lamina mass (LM), for 325 Qinghai–Tibetan woody species, and examined their relation to leaf form, altitude, climate, and vegetation types. Both crossspecies analysis and meta-analysis showed significantly isometric, negatively allometric, and positively allometric scaling of the petiole–lamina relationships in the length, area, and mass dimensions, respectively, reflecting an equal, slower, and faster variation in the petiole than in the lamina in these trait dimensions. Along altitudinal gradients, the effect size of the petiole–lamina relationship decreased in the length and mass dimensions but increased in the area dimension, suggesting the importance of enhancing leaf light-interception and nutrient transport efficiency in the warm zones in petiole development, but enhancing leaf support/protection in the cold zones. The significant additional influences of LA, LM, and LA were observed on the PL–LL, PCA–LA, and PM–LM relationships, respectively, implying that the single-dimension petiole trait is affected simultaneously by multidimensional lamina traits. Relative to simple-leaved species, the presence of petiolule in compound-leaved species can increase both leaf light interception and static gravity loads or dynamic drag forces on the petiole, leading to lower dependence of PL variation on LL variation, but higher biomass allocation to the petiole. Our study highlights the need for multidimension analyses of the petiole–lamina relationships and illustrates the importance of plant functional tradeoffs and the change in the tradeoffs along environmental gradients in determining the relationships.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3