Prokaryotic diversity and community structure in the rhizosphere of Lantana weed (Lantana camara L.)

Author:

Gola Upasana,Kour Shilippreet,Kaur Tanvir,Perveen Kahkashan,Bukhari Najat A.,Alsulami Jamilah A.,Maithani Damini,Dasila Hemant,Singh Manali,Suyal Deep Chandra

Abstract

Lantana weed (Lantana camara L.) is among the most noxious weeds in the world. Keeping in mind its invasive behavior and great ecological tolerance, it becomes imperative to analyze the structure and function of associated microbiome. In this perspective, Illumina-based metagenome sequencing was performed to gain a better understanding of prokaryotic diversity and community structure in the rhizosphere soil of L. camara L. The organic carbon, nitrogen, phosphorus, and potassium contents in the rhizosphere soil were 0.91% (± 0.21%); 280 Kg ha-1 (± 4.02 Kg ha-1), 54.5 Kg ha-1 (± 3.12 Kg ha-1), and 189 Kg ha-1 (± 6.11 Kg ha-1), respectively. The metagenome analysis revealed the existence of 41 bacterial and 2 archaeal phyla, with only 12 showing ≥1% abundances. Pseudomonadota was the dominant phylum with 31.3% abundance, followed by Actinomycetota (20.9%). Further, 54 different genera were identified with the highest abundance of Devosia (2.8%). The PICRUSt analysis predicted various functional traits in the soil metagenome, with general cellular functions dominating, followed by stress tolerance. Moreover, 10% of the functions were associated with nitrogen fixation, phosphate solubilization, and potassium mobilization. In conclusion, the present study revealed the existence of diverse prokaryotic communities in the rhizosphere of the L. camara L. which was primarily associated with stress response and plant growth promotion. To the best of our knowledge, this study documents for the first time the L. camara L. microbiome. Furthermore, the identified genera can be explored for agricultural needs in future.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3