Author:
Zhang Yini,Luan Qifu,Jiang Jingmin,Li Yanjie
Abstract
Drought is a major abiotic stress that adversely affects the growth and productivity of plants. Malondialdehyde (MDA), a substance produced by membrane lipids in response to reactive oxygen species (ROS), can be used as a drought indicator to evaluate the degree of plasma membrane damage and the ability of plants to drought stress tolerance. Still measuring MDA is usually a labor- and time-consuming task. In this study, near-infrared (NIR) spectroscopy combined with partial least squares (PLS) was used to obtain rapid and high-throughput measurements of MDA, and the application of this technique to plant drought stress experiments was also investigated. Two exotic conifer tree species, namely, slash pine (Pinus elliottii) and loblolly pine (Pinus taeda), were used as plant material exposed to drought stress; different types of spectral preprocessing methods and important feature-selection algorithms were applied to the PLS model to calibrate it and obtain the best MDA-predicting model. The results show that the best PLS model is established via the combined treatment of detrended variable–significant multivariate correlation algorithm (DET-sMC), where latent variables (LVs) were 6. This model has a respectable predictive capability, with a correlation coefficient (R2) of 0.66, a root mean square error (RMSE) of 2.28%, and a residual prediction deviation (RPD) of 1.51, and it was successfully implemented in drought stress experiments as a reliable and non-destructive method to detect the MDA content in real time.
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献