Long-Term Efficacy and Safety of RNAi-Mediated Virus Resistance in ‘HoneySweet’ Plum

Author:

Singh Khushwant,Callahan Ann M.,Smith Brenda J.,Malinowski Tadeusz,Scorza Ralph,Jarošová Jana,Beoni Eva,Polák Jaroslav,Kundu Jiban Kumar,Dardick Chris

Abstract

Interfering RNA technology has been established as an effective strategy to protect plants against viral infection. Despite this success, interfering RNA (RNAi) has rarely been applied due to the regulatory barriers that confront genetically engineered plants and concerns over possible environmental and health risks posed by non-endogenous small RNAs. ‘HoneySweet’ was developed as a virus-resistant plum variety that is protected by an RNAi-mediated process against Sharka disease caused by the plum pox virus. ‘HoneySweet’ has been approved for cultivation in the United States but not in countries where the plum pox virus is endemic. In this study, we evaluated the long-term efficacy of virus resistance in ‘HoneySweet,’ the nature and stability of its sRNA profile, and the potential health risks of consuming ‘HoneySweet’ plums. Graft-challenged ‘HoneySweet’ trees carrying large non-transgenic infected limbs remained virus-free after more than 10 years in the field, and the viral sequences from the non-transgenic infected limbs showed no evidence of adaptation to the RNAi-based resistance. Small RNA profiling revealed that transgene-derived sRNA levels were stable across different environments and, on average, were more than 10 times lower than those present in symptom-less fruits from virus-infected trees. Comprehensive 90-day mouse feeding studies showed no adverse health impacts in mice, and there was no evidence for potential siRNA off-target pathologies predicted by comparisons of the most abundant transgene-derived sRNAs to the mouse genome. Collectively, the data confirmed that RNAi provides a highly effective, stable, and safe strategy to combat virus diseases in crop plants.

Funder

Ministerstvo Školství, Mládeže a Telovýchovy

Foreign Agricultural Service

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3