Environment Characterization in Sorghum (Sorghum bicolor L.) by Modeling Water-Deficit and Heat Patterns in the Great Plains Region, United States

Author:

Carcedo Ana J. P.,Mayor Laura,Demarco Paula,Morris Geoffrey P.,Lingenfelser Jane,Messina Carlos D.,Ciampitti Ignacio A.

Abstract

Environmental characterization for defining the target population of environments (TPE) is critical to improve the efficiency of breeding programs in crops, such as sorghum (Sorghum bicolorL.). The aim of this study was to characterize the spatial and temporal variation for a TPE for sorghum within the United States. APSIM-sorghum, included in the Agricultural Production Systems sIMulator software platform, was used to quantify water-deficit and heat patterns for 15 sites in the sorghum belt. Historical weather data (∼35 years) was used to identify water (WSP) and heat (HSP) stress patterns to develop water–heat clusters. Four WSPs were identified with large differences in the timing of onset, intensity, and duration of the stress. In the western region of Kansas, Oklahoma, and Texas, the most frequent WSP (∼35%) was stress during grain filling with late recovery. For northeast Kansas, WSP frequencies were more evenly distributed, suggesting large temporal variation. Three HSPs were defined, with the low HSP being most frequent (∼68%). Field data from Kansas State University sorghum hybrid yield performance trials (2006–2013 period, 6 hybrids, 10 sites, 46 site × year combinations) were classified into the previously defined WSP and HSP clusters. As the intensity of the environmental stress increased, there was a clear reduction on grain yield. Both simulated and observed yield data showed similar yield trends when the level of heat or water stressed increased. Field yield data clearly separated contrasting clusters for both water and heat patterns (with vs. without stress). Thus, the patterns were regrouped into four categories, which account for the observed genotype by environment interaction (GxE) and can be applied in a breeding program. A better definition of TPE to improve predictability of GxE could accelerate genetic gains and help bridge the gap between breeders, agronomists, and farmers.

Funder

Foundation for Food and Agriculture Research

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3