The function of BoTCP25 in the regulation of leaf development of Chinese kale

Author:

Zeng Jiajing,Yang Mengyu,Deng Jing,Zheng Dongyang,Lai Zhongxiong,Wang-Pruski Gefu,XuHan Xu,Guo Rongfang

Abstract

XG Chinese kale (Brassica oleracea cv. ‘XiangGu’) is a variety of Chinese kale and has metamorphic leaves attached to the true leaves. Metamorphic leaves are secondary leaves emerging from the veins of true leaves. However, it remains unknown how the formation of metamorphic leaves is regulated and whether it differs from normal leaves. BoTCP25 is differentially expressed in different parts of XG leaves and respond to auxin signals. To clarify the function of BoTCP25 in XG Chinese kale leaves, we overexpressed BoTCP25 in XG and Arabidopsis, and interestingly, its overexpression caused Chinese kale leaves to curl and changed the location of metamorphic leaves, whereas heterologous expression of BoTCP25 in Arabidopsis did not show metamorphic leaves, but only an increase in leaf number and leaf area. Further analysis of the expression of related genes in Chinese kale and Arabidopsis overexpressing BoTCP25 revealed that BoTCP25 could directly bind the promoter of BoNGA3, a transcription factor related to leaf development, and induce a significant expression of BoNGA3 in transgenic Chinese kale plants, whereas this induction of NGA3 did not occur in transgenic Arabidopsis. This suggests that the regulation of Chinese kale metamorphic leaves by BoTCP25 is dependent on a regulatory pathway or elements specific to XG and that this regulatory element may be repressed or absent from Arabidopsis. In addition, the expression of miR319’s precursor, a negative regulator of BoTCP25, also differed in transgenic Chinese kale and Arabidopsis. miR319’s transcrips were significantly up-regulated in transgenic Chinese kale mature leaves, while in transgenic Arabidopsis, the expression of miR319 in mature leaves was kept low. In conclusion, the differential expression of BoNGA3 and miR319 in the two species may be related to the exertion of BoTCP25 function, thus partially contributing to the differences in leaf phenotypes between overexpressed BoTCP25 in Arabidopsis and Chinese kale.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3