Root Functional Trait and Soil Microbial Coordination: Implications for Soil Respiration in Riparian Agroecosystems

Author:

Borden Kira A.,Mafa-Attoye Tolulope G.,Dunfield Kari E.,Thevathasan Naresh V.,Gordon Andrew M.,Isaac Marney E.

Abstract

Predicting respiration from roots and soil microbes is important in agricultural landscapes where net flux of carbon from the soil to the atmosphere is of large concern. Yet, in riparian agroecosystems that buffer aquatic environments from agricultural fields, little is known on the differential contribution of CO2 sources nor the systematic patterns in root and microbial communities that relate to these emissions. We deployed a field-based root exclusion experiment to measure heterotrophic and autotrophic-rhizospheric respiration across riparian buffer types in an agricultural landscape in southern Ontario, Canada. We paired bi-weekly measurements of in-field CO2 flux with analysis of soil properties and fine root functional traits. We quantified soil microbial community structure using qPCR to estimate bacterial and fungal abundance and characterized microbial diversity using high-throughput sequencing. Mean daytime total soil respiration rates in the growing season were 186.1 ± 26.7, 188.7 ± 23.0, 278.6 ± 30.0, and 503.4 ± 31.3 mg CO2-C m–2 h–1 in remnant coniferous and mixed forest, and rehabilitated forest and grass buffers, respectively. Contributions of autotrophic-rhizospheric respiration to total soil CO2 fluxes ranged widely between 14 and 63% across the buffers. Covariation in root traits aligned roots of higher specific root length and nitrogen content with higher specific root respiration rates, while microbial abundance in rhizosphere soil coorindated with roots that were thicker in diameter and higher in carbon to nitrogen ratio. Variation in autotrophic-rhizospheric respiration on a soil area basis was explained by soil temperature, fine root length density, and covariation in root traits. Heterotrophic respiration was strongly explained by soil moisture, temperature, and soil carbon, while multiple factor analysis revealed a positive correlation with soil microbial diversity. This is a first in-field study to quantify root and soil respiration in relation to trade-offs in root trait expression and to determine interactions between root traits and soil microbial community structure to predict soil respiration.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3