Efficient Windows malware identification and classification scheme for plant protection information systems

Author:

Chen Zhiguo,Xing Shuangshuang,Ren Xuanyu

Abstract

Due to developments in science and technology, the field of plant protection and the information industry have become increasingly integrated, which has resulted in the creation of plant protection information systems. Plant protection information systems have modernized how pest levels are monitored and improved overall control capabilities. They also provide data to support crop pest monitoring and early warnings and promote the sustainable development of plant protection networks, visualization, and digitization. However, cybercriminals use technologies such as code reuse and automation to generate malware variants, resulting in continuous attacks on plant protection information terminals. Therefore, effective identification of rapidly growing malware and its variants has become critical. Recent studies have shown that malware and its variants can be effectively identified and classified using convolutional neural networks (CNNs) to analyze the similarity between malware binary images. However, the malware images generated by such schemes have the problem of image size imbalance, which affects the accuracy of malware classification. In order to solve the above problems, this paper proposes a malware identification and classification scheme based on bicubic interpolation to improve the security of a plant protection information terminal system. We used the bicubic interpolation algorithm to reconstruct the generated malware images to solve the problem of image size imbalance. We used the Cycle-GAN model for data augmentation to balance the number of samples among malware families and build an efficient malware classification model based on CNNs to improve the malware identification and classification performance of the system. Experimental results show that the system can significantly improve malware classification efficiency. The accuracy of RGB and gray images generated by the Microsoft Malware Classification Challenge Dataset (BIG2015) can reach 99.76% and 99.62%, respectively.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CSO-DQN: Circle Search Optimization-based Deep Q-Learning Network for Intrusion Detection System in Cloud Environment;IETE Journal of Research;2024-05-26

2. Enhanced Image-Based Malware Multiclass Classification Method with the Ensemble Model and SVM;Open Information Science;2024-01-01

3. Flying Neural Network-Based Optimistic Financial Early Alert System in AI Model;2023 6th International Conference on Contemporary Computing and Informatics (IC3I);2023-09-14

4. Image-Based Malware Classification: A Systematic Literature Review;2023 IEEE International Conference on Cryptography, Informatics, and Cybersecurity (ICoCICs);2023-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3