Low-Altitude Boundary of Abies faxoniana Is More Susceptible to Long-Term Open-Top Chamber Warming in the Eastern Tibetan Plateau

Author:

Song Haifeng,Han Qingquan,Zhang Sheng

Abstract

With global climate change, for evaluating warming effect on subalpine forest distribution, the substantial effects of long-term warming on tree growth and soil nutrients need to be explored. In this study, we focused on different responses in the boundaries of trees and soils to warming. Using the open-top chamber (OTC), a 10-year artificial warming experiment was conducted to evaluate the impacts of warming on Abies faxoniana at three different altitudes. We determined metabolites and nutrient concentrations in needles of A. faxoniana and characterized the soil chemistries. Many kinds of sugars, amino acids, and organic acids showed higher contents at high altitude (3,500 m) compared with low altitude (2,600 m), which could have been due to the temperature differences. Warming significantly decreased needle sugar and amino acid concentrations at high altitude but increased them at low altitude. These results indicated contrasting physiological and metabolic responses of A. faxoniana to long-term warming at different altitudes. Furthermore, we found that OTC warming significantly increased the concentrations of soil extractable sodium, aluminum (Al), and manganese (Mn), while decreased potassium (K) and phosphorus (P) concentrations and pH values at low altitude rather than at middle (3,000 m) or high altitude. The soil carbon and nitrogen contents were increased only at the middle altitude. In A. faxoniana at low altitudes, more mineral nutrients iron, K, and P were demand, and a mass of Al, Mn, and zinc was accumulated under warming. Soil P limitation and heavy metals accumulation are disadvantageous for trees at low altitudes with warming. Therefore, compared with high altitudes, A. faxoniana growing at low boundary in alpine regions is expected to be more susceptible to warming.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3