Tobacco shred varieties classification using Multi-Scale-X-ResNet network and machine vision

Author:

Niu Qunfeng,Liu Jiangpeng,Jin Yi,Chen Xia,Zhu Wenkui,Yuan Qiang

Abstract

The primary task in calculating the tobacco shred blending ratio is identifying the four tobacco shred types: expanded tobacco silk, cut stem, tobacco silk, and reconstituted tobacco shred. The classification precision directly affects the subsequent determination of tobacco shred components. However, the tobacco shred types, especially expanded tobacco silk and tobacco silk, have no apparent differences in macro-scale characteristics. The tobacco shreds have small size and irregular shape characteristics, creating significant challenges in their recognition and classification based on machine vision. This study provides a complete set of solutions aimed at this problem for screening tobacco shred samples, taking images, image preprocessing, establishing datasets, and identifying types. A block threshold binarization method is used for image preprocessing. Parameter setting and method performance are researched to obtain the maximum number of complete samples with acceptable execution time. ResNet50 is used as the primary classification and recognition network structure. By increasing the multi-scale structure and optimizing the number of blocks and loss function, a new tobacco shred image classification method is proposed based on the MS-X-ResNet (Multi-Scale-X-ResNet) network. Specifically, the MS-ResNet network is obtained by fusing the multi-scale Stage 3 low-dimensional and Stage 4 high-dimensional features to reduce the overfitting risk. The number of blocks in Stages 1–4 are adjusted from the original 3:4:6:3 to 3:4:N:3 (A-ResNet) and 3:3:N:3 (B-ResNet) to obtain the X-ResNet network, which improves the model’s classification performance with lower complexity. The focal loss function is selected to reduce the impact of identification difficulty for different sample types on the network and improve its performance. The experimental results show that the final classification accuracy of the network on a tobacco shred dataset is 96.56%. The image recognition of a single tobacco shred requires 103 ms, achieving high classification accuracy and efficiency. The image preprocessing and deep learning algorithms for tobacco shred classification and identification proposed in this study provide a new implementation approach for the actual production and quality detection of tobacco and a new way for online real-time type identification of other agricultural products.

Funder

China National Tobacco Corporation

Henan Provincial Science and Technology Research Project

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3