Development of 1,3,4-Oxadiazole Derived Antifungal Agents and Their Application in Maize Diseases Control

Author:

Yao Lin,Zhang Guanghua,Yu Lili,Liu Shaojing,Wang Xiaoku,Fan Tao,Kang Hui,Feng Wenzhi

Abstract

Maize is an important food crop and its fungal disease has become a limiting factor to improve the yield and quality of maize. In the control of plant pathogens, commercial fungicides have no obvious effect on corn diseases due to the emergence of drug resistance. Therefore, it is of great significance to develop new fungicides with novel structure, high efficiency, and low toxicity to control maize diseases. In this paper, a series of 1,3,4-oxadiazole derivatives were designed and synthesized from benzoyl hydrazine and aromatic aldehydes through condensation and oxidation cyclization reaction. The antifungal activity of oxadiazole derivatives against three maize disease pathogens, such as Rhizoctonia solani (R. solani), Gibberella zeae (G. zeae), and Exserohilum turcicum (E. turcicum), were evaluated by mycelium growth rate method in vitro. The results indicated that most of the synthesized derivatives exhibited positive antifungal activities. Especially against E. turcicum, several compounds demonstrated significant antifungal activities and their EC50 values were lower than positive control carbendazim. The EC50 values of compounds 4k, 5e, and 5k were 50.48, 47.56, 32.25 μg/ml, respectively, and the carbendazim was 102.83 μg/ml. The effects of active compounds on E. turcicum microstructure were observed by scanning electron microscopy (SEM). The results showed that compounds 4k, 5e, and 5k could induce the hyphae of E. turcicum to shrink and collapse obviously. In order to elucidate the preliminary mechanism of oxadiazole derivatives, the target compounds 5e and 5k were docked with the theoretical active site of succinate dehydrogenase (SDH). Compounds 5e and 5k could bind to amino acid residues through hydrophobic contact and hydrogen bonds, which explained the possible mechanism of binding between the inhibitor and target protein. In addition, the compounds with antifungal activities had almost no cytotoxicity to MCF-7. This study showed that 1,3,4-oxadiazole derivatives were worthy for further attention as potential antifungal agents for the control of maize diseases.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3