Metabolic Profiling of Resistant and Susceptible Tobaccos Response Incited by Ralstonia pseudosolanacearum Causing Bacterial Wilt

Author:

Yang Liang,Wei Zhouling,Valls Marc,Ding Wei

Abstract

The causal agent of bacterial wilt, Ralstonia pseudosolanacearum, can cause significant economic losses during tobacco production. Metabolic analyses are a useful tool for the comprehensive identification of plant defense response metabolites. In this study, a gas chromatography-mass spectrometry (GC-MS) approach was used to identify metabolites differences in tobacco xylem sap in response to R. pseudosolanacearum CQPS-1 in two tobacco cultivars: Yunyan87 (susceptible to R. pseudosolanacearum) and K326 (quantitatively resistant). Metabolite profiling 7 days post inoculation with R. pseudosolanacearum identified 88 known compounds, 42 of them enriched and 6 depleted in the susceptible cultivar Yunyan87, while almost no changes occurred in quantitatively resistant cultivar K326. Putrescine was the most enriched compound (12-fold) in infected susceptible tobacco xylem, followed by methyl-alpha-d-glucopyranoside (9-fold) and arabinitol (6-fold). Other sugars, amino acids, and organic acids were also enriched upon infection. Collectively, these metabolites can promote R. pseudosolanacearum growth, as shown by the increased growth of bacterial cultures supplemented with xylem sap from infected tobacco plants. Comparison with previous metabolic data showed that beta-alanine, phenylalanine, and leucine were enriched during bacterial wilt in both tobacco and tomato xylem.

Funder

China National Tobacco Corporation

National Natural Science Foundation of China

Spanish Ministry of Science and Innovation

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3