Plastid phylogenomics clarifies broad-level relationships in Bulbophyllum (Orchidaceae) and provides insights into range evolution of Australasian section Adelopetalum

Author:

Simpson Lalita,Clements Mark A.,Orel Harvey K.,Crayn Darren M.,Nargar Katharina

Abstract

The hyperdiverse orchid genus Bulbophyllum is the second largest genus of flowering plants and exhibits a pantropical distribution with a center of diversity in tropical Asia. The only Bulbophyllum section with a center of diversity in Australasia is sect. Adelopetalum. However, the phylogenetic placement, interspecific relationships, and spatio-temporal evolution of this section remain largely unclear. To infer broad-level relationships within Bulbophyllum, and interspecific relationships within sect. Adelopetalum, a genome skimming dataset was generated for 89 samples, which yielded 70 plastid coding regions and a nuclear ribosomal DNA cistron. For 18 additional samples, Sanger data from two plastid loci (matK and ycf1) and nuclear ITS were added using a supermatrix approach. The study provided new insights into broad-level relationships in Bulbophyllum, including phylogenetic evidence for the non-monophyly of sections Beccariana, Brachyantha, Brachypus, Cirrhopetaloides, Cirrhopetalum, Desmosanthes, Minutissima, Oxysepala, Polymeres, and Sestochilos. Section Adelopetalum and sect. Minutissima s.s. formed a highly supported clade that was resolved as a sister group to the remainder of the genus. Divergence time estimations based on a relaxed molecular clock model placed the origin of Bulbophyllum in the Early Oligocene (ca. 33.2 Ma) and sect. Adelopetalum in the Late Oligocene (ca. 23.6 Ma). Ancestral range estimations based on a BAYAREALIKE model identified the Australian continent as the ancestral area of the sect. Adelopetalum. The section underwent crown diversification from the mid-Miocene to the late Pleistocene, predominantly in continental Australia. At least two independent long-distance dispersal events were inferred eastward from the Australian continent to New Zealand and to New Caledonia from the early Pliocene onwards, likely mediated by predominantly westerly winds of the Southern hemisphere. Retraction and fragmentation of the eastern Australian rainforests from the early Miocene onwards are likely drivers of lineage divergence within sect. Adelopetalum facilitating allopatric speciation.

Funder

Australian Biological Resources Study

Hermon Slade Foundation

Australian Orchid Foundation

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3