HPLC method for quantifying verbascoside in Stizophyllum perforatum and assessment of verbascoside acute toxicity and antileishmanial activity

Author:

Alves Osvaine Junior Alvarenga,Ozelin Saulo Duarte,Magalhães Larissa Fernandes,Candido Ana Carolina Bolela Bovo,Gimenez Valéria Maria Melleiro,Silva Márcio Luís Andrade e,Cunha Wilson Roberto,Januário Ana Helena,Tavares Denise Crispim,Magalhães Lizandra Guidi,Pauletti Patricia Mendonça

Abstract

We report the chemical composition of the crude leaf extracts obtained from Stizophyllum perforatum (Cham.) Miers (Bignoniaceae), a simple high-performance liquid chromatography–diode array detection (HPLC-DAD) method based on mangiferin as an internal standard to quantify verbascoside, and the verbascoside acute oral toxicity and antileishmanial activity. HPLC–high-resolution mass spectrometry–DAD (HPLC–HRMS–DAD) analyses of the crude ethanol S. perforatum leaf extracts (CE-1 and CE-2) revealed that verbascoside was the major constituent in both extracts. CE-1 was purified, and verbascoside and casticin, among other compounds, were isolated. The developed HPLC-DAD method was validated and met the required standards. Investigation of the CE-2 acute toxicity indicated a lethal dose (LD50) greater than 2,000 mg/kg of body weight. Both CE-1 and CE-2 exhibited antileishmanial activity. The isolated compounds, verbascoside and casticin, also displayed antileishmanial activity with effective concentrations (IC50) of 6.23 and 24.20 µM against promastigote forms and 3.71 and 18.97 µM against amastigote forms of Leishmania amazonensis, respectively, but they were not cytotoxic to J774A.1 macrophages. Scanning electron microscopy of the L. amazonensis promastigotes showed that the parasites became more rounded and that their plasma membrane was altered in the presence of verbascoside. Additionally, transmission electron microscopy demonstrated that vacuoles emerged, lipids accumulated, kinetoplast size increased, and interstitial extravasation occurred in L. amazonensis promastigotes exposed to verbascoside. These findings suggest that S. perforatum is a promising candidate for further in vivo investigations against L. amazonensis.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3