Effects of inorganic and compost tea fertilizers application on the taxonomic and functional microbial diversity of the purslane rhizosphere

Author:

Carrascosa Angel,Pascual Jose Antonio,López-García Álvaro,Romo-Vaquero María,De Santiago Ana,Ros Margarita,Petropoulos Spyridon A.,Alguacil Maria Del Mar

Abstract

IntroductionSoil fertility is a major determinant of plant-microbial interactions, thus, directly and indirectly affecting crop productivity and ecosystem functions. In this study, we analysed for the first time the effects of fertilizer addition on the cropping of purslane (Portulaca oleracea) with particular attention to the taxonomic and functional characteristics of their associated soil microbiota.MethodsWe tested the effects of different doses of inorganic fertilization differing in the amount of N:P:K namely IT1 (300:100:100); IT2 (300:200:100); IT3 (300:200:200); and IT4 (600:100:100) (ppm N:P:K ratio) and organic fertilization (compost tea) which reached at the end of the assay the dose of 300 ppm N.Results and discussionPurslane growth and soil quality parameters and their microbial community structure, abundance of fungal functional groups and prevailing bacterial metabolic functions were monitored. The application of compost tea and inorganic fertilizers significantly increased the purslane shoot biomass, and some soil chemical properties such as pH and soil enzymatic activities related to C, N and P biogeochemical cycles. The bacterial and fungal community compositions were significantly affected by the organic and chemical fertilizers input. The majority of inorganic fertilization treatments decreased the fungal and bacterial diversity as well as some predictive bacterial functional pathways.ConclusionsThese findings suggest that the inorganic fertilization might lead to a change of microbial functioning. However, in order to get stronger evidence that supports the found pattern, longer time-frame experiments that ideally include sampling across different seasons are needed. Thus, further research is still needed to investigate the effects of fertilizations on purslane productivity under commercial field conditions.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3