The importance of plant growth-promoting rhizobacteria to increase air pollution tolerance index (APTI) in the plants of green belt to control dust hazards

Author:

Najafi Zilaie Mahmood,Mosleh Arani Asghar,Etesami Hassan

Abstract

Dust causes adverse effects on the physiological and biochemical characteristics of plants and limits their use in the development of the green belt. Air Pollution Tolerance Index (APTI) is an important tool to screen out plants, based on their tolerance or sensitivity level to different air pollutants. The aim of this study was to investigate the effect of two plant growth-promoting bacterial strains (Zhihengliuella halotolerans SB and Bacillus pumilus HR) and their combination as a biological solution on APTI of three desert plant species of Seidlitzia rosmarinus, Haloxylon aphyllum and Nitraria schoberi under dust stress (0 and 1.5 g m-2 30 days-1). Dust caused a significant decrease of 21% and 19%, respectively, in the total chlorophyll of N. schoberi and S. rosmarinus, an 8% decrease in leaf relative water content, a 7% decrease in the APTI of N. schoberi, and a decrease of 26 and 17% in protein content of H. aphyllum and N. schoberi, respectively. However, Z. halotolerans SB increased the amount of total chlorophyll in H. aphyllum and S. rosmarinus by 236% and 21%, respectively, and the amount of ascorbic acid by 75% and 67% in H. aphyllum and N. schoberi, respectively. B. pumilus HR also increased the leaf relative water content in H. aphyllum and N. schoberi by 10% and 15%, respectively. The inoculation with B. pumilus HR, Z. halotolerans SB and the combination of these two isolates decreased the activity of peroxidase by 70%, 51%, and 36%, respectively, in N. schoberi, and 62%, 89%, and 25% in S. rosmarinus, respectively. These bacterial strains also increased the concentration of protein in all three desert plants. Under dust stress, H. aphyllum had a higher APTI than the other two species. Z. halotolerans SB, which had been isolated from S. rosmarinus, was more effective than B. pumilus HR in alleviating the effects of dust stress on this plant. Therefore, it was concluded that plant growth-promoting rhizobacteria can be effective at improving the mechanisms of plant tolerance to air pollution in the green belt.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3