Response of grassland ecosystem function to plant functional traits under different vegetation restoration models in areas of karst desertification

Author:

Song Shuzhen,Xiong Kangning,Chi Yongkuan

Abstract

Plant functional traits serve as a bridge between plants, the environment, and ecosystem function, playing an important role in predicting the changes in ecosystem function that occur during ecological restoration. However, the response of grassland ecosystem function to plant functional traits in the context of ecological restoration in areas of karst desertification remains unclear. Therefore, in this study, we selected five plant functional traits [namely, plant height (H), specific leaf area (SLA), leaf dry matter content (LDMC), root length (RL), and root dry matter content (RDMC)], measured these along with community-weighted mean (CWM) and functional trait diversity, and combined these measures with 10 indexes related to ecosystem function in order to investigate the differences in plant functional traits and ecosystem function, as well as the relationship between plant functional traits and ecosystem functions, under four ecological restoration models [Dactylis glomerata (DG), Lolium perenne (LP), Lolium perenne + Trifolium repens (LT), and natural grassland (NG)]. We found that: 1) the Margalef index and Shannon–Wiener index were significantly lower for plant species in DG and LP than for those in NG (P<0.05), while the Simpson index was significantly higher in the former than in NG (P<0.05); 2) CWMH, CWMLDMC, and CWMRDMC were significantly higher in DG, LP, and LT than in NG, while CWMSLA was significantly lower in the former than in NG (P<0.05). The functional richness index (FRic) was significantly higher in DG and LP than in NG and LT, but the functional dispersion index (FDis) and Rao’s quadratic entropy index (RaoQ) were significantly lower in DG and LP than in NG and LT (P<0.05), and there was no significant difference between DG and LP, or between NG and LT (P>0.05); 3) ecosystem function, including ecosystem productivity, carbon storage, water conservation and soil conservation, was highest in LT and lowest in NG; and 4) CWMLDMC (F=56.7, P=0.024), CWMRL (F=28.7, P=0.024), and CWMH (F=4.5, P=0.048) were the main factors affecting ecosystem function. The results showed that the mixed pasture of perennial ryegrass and white clover was most conductive to restoration of ecosystem function. This discovery has important implications for the establishment of vegetation, optimal utilization of resources, and the sustainable development of degraded karst ecosystems.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3