Genetic variability and genotype by environment interaction of two major cassava processed products in multi-environments

Author:

Aghogho Cynthia Idhigu,Eleblu Saviour J. Y.,Bakare Moshood A.,Kayondo Ismail Siraj,Asante Isaac,Parkes Elizabeth Y.,Kulakow Peter,Offei Samuel Kwame,Rabbi Ismail

Abstract

Conversion of cassava (Manihot esculenta) roots to processed products such as gari and fufu before consumption is a common practice worldwide by cassava end-user for detoxification, prolonged shelf life or profitability. Fresh root and processed product yield are supposed to be equivalent for each genotype, however, that is not the case. Developing genotypes with high product conversion rate is an important breeding goal in cassava as it drives the adoption rates of new varieties. The objective of this study was to quantify the contribution of genetic and genotype-by-environment interaction (GEI) patterns on cassava root conversion rate to gari and fufu. Sixty-seven advanced breeding genotypes from the International Institute of Tropical Agriculture (IITA) were evaluated across eight environments in Nigeria. Root conversion rate means across trials ranges from 14.72 to 22.76% for gari% and 16.96–24.24% for fufu%. Heritability estimates range from 0.17 to 0.74 for trial bases and 0.71 overall environment for gari% and 0.03–0.65 for trial bases and 0.72 overall environment for fufu% which implies that genetic improvement can be made on these traits. Root conversion rate for both gari and fufu% showed a negative but insignificant correlation with fresh root yield and significant positive correlation to Dry Matter content. For all fitted models, environment and interaction had explained more of the phenotypic variation observed among genotypes for both product conversion rates showing the presence of a strong GEI. Wrickle ecovalence (Wi) stability analysis and Geometric Adaptability index (GAI) identified G40 (TMS14F1285P0006) as part of top 5 genotypes for gari% but no overlapping genotype was identified by both stability analysis for fufu%. This genotypic performance across environments suggests that it is possible to have genotype with dual-purpose for high gari and fufu conversion rate.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference71 articles.

1. Comparative assessment of fermentation techniques in the processing of fufu, a traditional fermented cassava product.;Achi;Pak. J. Nutr.,2006

2. Yield, suitability and sensory evaluation of gari produced from two cassava varieties at different age;Adegbola;Int. J. Nat. Sci. Curr. Future Res. Trends,2014

3. Effect of processing methods on quality and acceptability of fufu from low cyanide cassava.;Akingbala;J. Sci. Food Agric.,1991

4. Estimation of the material losses and gari recovery rate during the processing of varieties and ages of cassava into gari.;Amoah;Asian J. Agric. Res.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3