Radial Growth of Trees Rather Than Shrubs in Boreal Forests Is Inhibited by Drought

Author:

Yang Jingwen,Zhang Qiuliang,Song Wenqi,Zhang Xu,Wang Xiaochun

Abstract

Of all forest biomes, boreal forests are experiencing the most significant warming. Drought caused by warming has a dramatic impact on species in boreal forests. However, little is known about whether the growth of trees and shrubs in boreal forests responds consistently to warming and drought. We obtained the tree-ring width data of 308 trees (Larix gmelinii and Pinus sylvestris var. mongolica) and 133 shrubs (Pinus pumila) from 26 sites in northeastern China. According to the climate data from 1950 to 2014, we determined three extreme drought years (1954, 1967, and 2008). The response difference of radial growth of trees and shrubs in boreal forests to drought was compared using resilience index, moving correlation and response analysis. The results showed that high temperature (mean and maximum temperature) in previous and current growing seasons promoted the growth of P. pumila, but inhibited the growth of trees. On the contrary, wetter conditions (higher PDSI) promoted tree growth but were not conducive to P. pumila growth in high latitudes. Moving correlation analysis showed similar results. In addition, water deficit was more likely to inhibit P. pumila growth in low latitudes. The drought resistance of P. pumila was stronger than that of L. gmelinii and P. sylvestris var. mongolica. Therefore, the growth loss and recovery time of P. pumila during drought was less than those of trees. We concluded that L. gmelinii and P. sylvestris var. mongolica are more prone to growth decline than P. pumila after the drought caused by climate warming. In the future climate warming, shrub growth may benefit more than trees. Our findings are of great significance in predicting the future changes in ecosystem composition and species distribution dynamics in extreme climate susceptible areas.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3