Farmland boundary extraction based on the AttMobile-DeeplabV3+ network and least squares fitting of straight lines

Author:

Lu Hao,Wang Hao,Ma Zhifeng,Ren Yaxin,Fu Weiqiang,Shan Yongchao,Hu Shupeng,Zhang Guangqiang,Meng Zhijun

Abstract

The rapid extraction of farmland boundaries is key to implementing autonomous operation of agricultural machinery. This study addresses the issue of incomplete farmland boundary segmentation in existing methods, proposing a method for obtaining farmland boundaries based on unmanned aerial vehicle (UAV) remote sensing images. The method is divided into two steps: boundary image acquisition and boundary line fitting. To acquire the boundary image, an improved semantic segmentation network, AttMobile-DeeplabV3+, is designed. Subsequently, a boundary tracing function is used to track the boundaries of the binary image. Lastly, the least squares method is used to obtain the fitted boundary line. The paper validates the method through experiments on both crop-covered and non-crop-covered farmland. Experimental results show that on crop-covered and non-crop-covered farmland, the network’s intersection over union (IoU) is 93.25% and 93.14%, respectively; the pixel accuracy (PA) for crop-covered farmland is 96.62%. The average vertical error and average angular error of the extracted boundary line are 0.039 and 1.473°, respectively. This research provides substantial and accurate data support, offering technical assistance for the positioning and path planning of autonomous agricultural machinery.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference42 articles.

1. Ai-enabled droplet detection and tracking for agricultural spraying systems;Acharya;Comput. Electron. Agric.,2022

2. Vision-based navigation and guidance for agricultural autonomous vehicles and robots: A review;Bai;Comput. Electron. Agric.,2023

3. Navigation path extraction for greenhouse cucumber-picking robots using the prediction-point hough transform;Chen;Comput. Electron. Agric.,2021

4. Encoder-decoder with atrous separable convolution for semantic image segmentation;Chen,2018

5. Automated detection of boundary line in paddy field using mobilev2-unet and ransac;He;Comput. Electron. Agric.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3