Physiological dynamics as indicators of plant response to manganese binary effect

Author:

Zhenggang Xu,Li Fan,Mengxi Zheng,Yunlin Zhao,Huimin Huang,Guiyan Yang

Abstract

IntroductionHeavy metals negatively affect plant physiology. However, plants can reduce their toxicity through physiological responses. Broussonetia papyrifera is a suitable candidate tree for carrying out the phytoremediation of manganese (Mn)-contaminated soil.MethodsConsidering that Mn stress typically exerts a binary effect on plants, to reveal the dynamic characteristics of the physiological indexes of B. papyrifera to Mn stress, we conducted pot experiments with six different Mn concentrations (0, 0.25, 0.5, 1, 2, and 5 mmol/L) for 60 days. In addition to the chlorophyll content, malondialdehyde (MDA), proline (PRO), soluble sugar, superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), the absorption and transfer characteristics of Mn, and root structure were also measured.ResultsPhytoremedial potential parameters such as the bioconcentration factor (BCF) and translocation factor (TF) displayed an increasing trend with the increase of Mn concentration. At lower Mn concentrations (<0.5 mmol/L), the TF value was <1 but crossed 1 when the Mn concentration exceeded 100 mmol/L. The Mn distribution in various tissues was in the following order: leaf > stem > root. The root structure analysis revealed that low-level concentrations of Mn (1 mmol/L) promoted root development. Mn concentration and stress duration had significant effects on all measured physiological indexes, and except soluble sugar, Mn concentration and stress time displayed a significant interaction on the physiological indexes.DiscussionOur study demonstrates that the physiological indexes of B. papyrifera display dynamic characteristics under Mn stress. Thus, during the monitoring process of Mn stress, it appears to be necessary to appropriately select sampling parts according to Mn concentration.

Funder

National Natural Science Foundation of China

National Forestry and Grassland Administration

China Postdoctoral Science Foundation

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3