Detection method of wheat spike improved YOLOv5s based on the attention mechanism

Author:

Zang Hecang,Wang Yanjing,Ru Linyuan,Zhou Meng,Chen Dandan,Zhao Qing,Zhang Jie,Li Guoqiang,Zheng Guoqing

Abstract

In wheat breeding, spike number is a key indicator for evaluating wheat yield, and the timely and accurate acquisition of wheat spike number is of great practical significance for yield prediction. In actual production; the method of using an artificial field survey to count wheat spikes is time-consuming and labor-intensive. Therefore, this paper proposes a method based on YOLOv5s with an improved attention mechanism, which can accurately detect the number of small-scale wheat spikes and better solve the problems of occlusion and cross-overlapping of the wheat spikes. This method introduces an efficient channel attention module (ECA) in the C3 module of the backbone structure of the YOLOv5s network model; at the same time, the global attention mechanism module (GAM) is inserted between the neck structure and the head structure; the attention mechanism can be more Effectively extract feature information and suppress useless information. The result shows that the accuracy of the improved YOLOv5s model reached 71.61% in the task of wheat spike number, which was 4.95% higher than that of the standard YOLOv5s model and had higher counting accuracy. The improved YOLOv5s and YOLOv5m have similar parameters, while RMSE and MEA are reduced by 7.62 and 6.47, respectively, and the performance is better than YOLOv5l. Therefore, the improved YOLOv5s method improves its applicability in complex field environments and provides a technical reference for the automatic identification of wheat spike numbers and yield estimation. Labeled images, source code, and trained models are available at: https://github.com/228384274/improved-yolov5.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference58 articles.

1. An exploration of deep-learning based phenotypic analysis to detect spike regions in field conditions for UK bread wheat.;Alkhudaydi;Plant Phenomics

2. SpikeletFCN: Counting spikelets from infield wheat crop images using fully convolutional networks;Alkhudaydi;Proceedings of the International Conference on Artificial Intelligence and Soft Computing (ICASC)

3. Improved single shot multibox detector target detection method based on deep feature fusion.;Bai;Concurr. Comput.,2022

4. Yolov4: Optimal speed and accuracy of object detection.;Bochkovskiy;arXiv,2020

5. Global wheat trade and codex alimentarius guidelines for deoxynivalenol: A mycotoxin common in wheat.;Chen;Glob. Food Secur.,2021

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3