Terpene Synthases in Rice Pan-Genome and Their Responses to Chilo suppressalis Larvae Infesting

Author:

Sun Yang,Zhang Pei-tao,Kou Dou-rong,Han Yang-chun,Fang Ji-chao,Ni Jiang-ping,Jiang Bin,Wang Xu,Zhang Yong-jun,Wang Wei,Kong Xiang-dong

Abstract

Terpene synthase (TPS) catalyzes the synthesis of terpenes and plays an important role in plant defense. This study identified 45 OsTPS genes (32 core genes and 13 variable genes) based on the high-quality rice gene-based pan-genome. This indicates limitations in OsTPS gene studies based on a single reference genome. In the present study, through collinearity between multiple rice genomes, one OsTPS gene absent in the reference (Nipponbare) genome was found and two TPS genes in the reference genome were found to have atypical structures, which would have been ignored in single genome analysis. OsTPS genes were divided into five groups and TPS-b was lost according to the phylogenetic tree. OsTPSs in TPS-c and TPS-g were all core genes indicating these two groups were stable during domestication. In addition, through the analysis of transcriptome data, some structural variations were found to affect the expression of OsTPS genes. Through the Ka/Ks calculation of OsTPS genes, we found that different OsTPS genes were under different selection pressure during domestication; for example, OsTPS22 and OsTPS29 experienced stronger positive selection than the other OsTPS genes. After Chilo suppressalis larvae infesting, 25 differentially expressed OsTPS genes were identified, which are involved in the diterpene phytoalexins precursors biosynthesis and ent-kaurene biosynthesis pathways. Overall, the present study conducted a bioinformatics analysis of OsTPS genes using a high-quality rice pan-genome, which provided a basis for further study of OsTPS genes.

Funder

National Natural Science Foundation of China

Major Science and Technology Projects in Anhui Province

Natural Science Foundation of Anhui Province

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3