Compensation of Wild Plants Weakens the Effects of Crop-Wild Gene Flow on Wild Rice Populations

Author:

Ouyang Dongxin,Dong Shanshan,Xiao Manqiu,You Jianling,Zhao Yao,Wang Yuguo,Zhang Wenju,Yang Ji,Song Zhiping

Abstract

Crop-wild gene flow may alter the fitness of the recipient i.e., crop-wild hybrids, then potentially impact wild populations, especially for the gene flow carrying selective advantageous crop alleles, such as transgenes conferring insect resistance. Given the continuous crop-wild gene flow since crop domestication and the occasionally stressful environments, the extant wild populations of most crops are still “wild.” One interpretation for this phenomenon is that wild populations have the mechanism buffered for the effects of crop alleles. However, solid evidence for this has been scarce. We used wild rice (Oryza rufipogon) and transgenic (Bt/CpTI) rice (O. sativa) as a crop-wild gene flow model and established cultivated, wild, and F7 hybrid rice populations under four levels of insect (Chilo suppressalis) pressure. Then, we measured the trait performance of the plants and estimated fitness to test the compensatory response of relatively high fitness compared to the level of insect damage. The performance of all plants varied with the insect pressure level; wild plants had higher insect-tolerance that was expressed as over- or equal-compensatory responses to insect damage, whereas crop and hybrids exhibited under-compensatory responses. The higher compensation resulted in a better performance of wild rice under insect pressure where transgenes conferring insect resistance had a somewhat beneficial effect. Remarkable hybrid vigour and the benefit effect of transgenes increased the fitness of hybrids together, but this joint effect was weakened by the compensation of wild plants. These results suggest that compensation to environmental stress may reduce the potential impacts of crop alleles on wild plants, thereby it is a mechanism maintaining the “wild” characteristics of wild populations under the scenario of continuous crop-wild gene flow.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3