Identification and Validation of Genomic Regions Associated With Charcoal Rot Resistance in Tropical Maize by Genome-Wide Association and Linkage Mapping

Author:

Rashid Zerka,Kaur Harleen,Babu Veerendra,Singh Pradeep Kumar,Harlapur Sharanappa I.,Nair Sudha K.

Abstract

Charcoal rot is a post-flowering stalk rot (PFSR) disease of maize caused by the fungal pathogen, Macrophomina phaseolina. It is a serious concern for smallholder maize cultivation, due to significant yield loss and plant lodging at harvest, and this disease is expected to surge with climate change effects like drought and high soil temperature. For identification and validation of genomic variants associated with charcoal rot resistance, a genome-wide association study (GWAS) was conducted on CIMMYT Asia association mapping panel comprising 396 tropical-adapted lines, especially to Asian environments. The panel was phenotyped for disease severity across two locations with high disease prevalence in India. A subset of 296,497 high-quality SNPs filtered from genotyping by sequencing was correcting for population structure and kinship matrices for single locus mixed linear model (MLM) of GWAS analysis. A total of 19 SNPs were identified to be associated with charcoal rot resistance with P-value ranging from 5.88 × 10−06 to 4.80 × 10−05. Haplotype regression analysis identified 21 significant haplotypes for the trait with Bonferroni corrected P ≤ 0.05. For validating the associated variants and identifying novel QTLs, QTL mapping was conducted using two F2:3 populations. Two QTLs with overlapping physical intervals, qMSR6 and qFMSR6 on chromosome 6, identified from two different mapping populations and contributed by two different resistant parents, were co-located with the SNPs and haplotypes identified at 103.51 Mb on chromosome 6. Similarly, several SNPs/haplotypes identified on chromosomes 3, 6 and 8 were also found to be physically co-located within QTL intervals detected in one of the two mapping populations. The study also noted that several SNPs/haplotypes for resistance to charcoal rot were located within physical intervals of previously reported QTLs for Gibberella stalk rot resistance, which opens up a new possibility for common disease resistance mechanisms for multiple stalk rots.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference75 articles.

1. Advances in anthracnose stalk rot resistance;Abad;The Fifth National IPM Symposium “Delivering on a Promise.”,2006

2. AlvaradoG. LópezM. VargasM. PachecoÁ. RodríguezF. BurgueñoJ. META-R (Multi Environment Trail Analysis With R for Windows) Version 4.12015

3. Drought and salt tolerance in plants;Bartels;Crit. Rev. Plant Sci,2005

4. The power of identity-by-state methods for linkage analysis;Bishop;Am. J. Hum. Genet,1990

5. Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics;Brocker;Planta,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3