Comprehensive identification and analysis of circRNAs during hickory (Carya cathayensis Sarg.) flower bud differentiation

Author:

Jin Hongmiao,Yang Zhengfu,Luo Jia,Li Caiyun,Chen Junhao,Lim Kean-Jin,Wang Zhengjia

Abstract

Flower bud differentiation represents a crucial transition from vegetative growth to reproductive development. Carya cathayensis (hickory) is an important economic species in China, with a long juvenile period that hinders its commercial development. In recent years, circular RNAs (circRNAs) have been widely studied and identified as sponges for miRNA regulation of mRNA expression. However, little is known regarding the role of circRNAs in flower buds. In this study, we sequenced circRNAs at three developmental stages (undifferentiated, differentiating, and fully differentiated) in both female and male buds. A total of 6,931 circRNAs were identified in the three developmental stages and 4,449 and 2,209 circRNAs were differentially expressed in female and male buds, respectively. Gene ontology demonstrated that many circRNA host genes participated in various processes, for example, cellular and intracellular pH regulation. Function annotation identified 46 differentially expressed circRNAs involved in flowering regulation, with 28 circRNAs found only in female buds, 4 found only in male buds, and 11 found in both female and male buds. A circRNA-miRNA-mRNA network was predicted based on 13 flowering-related circRNAs and their seven putative interacting miRNAs to describe the regulatory mechanism. Our preliminary results demonstrated a potential involvement of circRNA in bud differentiation. They provided a preliminary theoretical basis for how circRNA might participate in flower development in hickory, perhaps in woody plants.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3