Insights into the nutritional properties and molecular basis of biosynthesis of amino acids and vitamins of Gastrodia elata offered by metabolomic and transcriptomic analysis

Author:

Wang Yunsheng,Shahid Muhammad Qasim

Abstract

Gastrodia elata Blume (GE), a traditional and precious Chinese medicinal material, has been approved as a functional food. However, understanding GE’s nutritional properties and its molecular basis remains limited. Here, metabolomic and transcriptomic analyses were performed on young and mature tubers of G. elata.f.elata (GEEy and GEEm) and G. elata.f.glauca (GEGy and GEGm). A total of 345 metabolites were detected, including 76 different amino acids and their derivatives containing all human essential amino acids (e.g., l-(+)-lysine, l-leucine), 13 vitamins (e.g., nicotinamide, thiamine), and 34 alkaloids (e.g., spermine, choline). GEGm has higher amino acid accumulation than GEEy, GEEm and GEGy, and vitamin contents were also slightly different in all four samples. Implying that GE, especially GEGm, is a kind of excellent complementary food as amino acid nutrition provider. From assembled 21,513 transcripts (genes) based on the transcriptome, we identified many genes that encode enzymes (e.g., pfkA, bglX, tyrAa, lysA, his B, aroA), which are responsible for the biosynthesis of amino acids and enzymes (e.g., nadA, URH1, NAPRT1, punA, rsgA) that related to vitamins metabolism. A total of 16 pairs of the differentially expressed genes (DEG) and differentially accumulated metabolites (DAM) (e.g., gene-tia006709 coding GAPDH and l-(+)-arginine, and gene-tia010180 coding tyrA and l-(+)-arginine) and three DEG-DAM pairs (e.g., gene-tia015379 coding NadA and nicotinate d-ribonucleoside) show significant similar positive or negative correlation based on three, and two comparisons of GEEy vs. GEGy, GEGy vs. GEGm, GEEy vs. GEGy and GEEm vs. GEGm, which involved into amino acid biosynthesis, and nicotinate nicotinamide metabolism, respectively. These results prove that the enzyme coded by these DEG promotes (positive correlation) or inhibits (negative correlation) the biosynthesis of parallel DAM in GE. Overall, the data and corresponding analysis in this study provide new insights into the nutritional properties of GE and the related molecular basis.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3