Inflorescence temperature influences fruit set, phenology, and sink strength of Cabernet Sauvignon grape berries

Author:

Keller Markus,Scheele-Baldinger Regula,Ferguson John C.,Tarara Julie M.,Mills Lynn J.

Abstract

The temperature during the bloom period leading up to fruit set is a key determinant of reproductive success in plants and of harvest yield in crop plants. However, it is often unclear whether differences in yield components result from temperature effects on the whole plant or specifically on the flower or fruit sinks. We used a forced-convection, free-air cooling and heating system to manipulate the inflorescence temperature of field-grown Cabernet Sauvignon grapevines during the bloom period. Temperature regimes included cooling (ambient −7.5°C), heating (ambient +7.5°C), an ambient control, and a convective control. Cooling significantly retarded the time to fruit set and subsequent berry development, and heating shortened the time to fruit set and accelerated berry development relative to the two controls. Fruit set was decreased in cooled inflorescences, but although the cooling regime resulted in the lowest berry number per cluster, it also decreased seed and berry weight at harvest while not affecting seed number. Cooling inflorescences slightly decreased fruit soluble solids and pH, and increased titratable acidity, but did not affect color density. The inflorescence temperature did not impact leaf gas exchange and shoot growth, and shoot periderm formation occurred independently of the timing of fruit ripening. These results suggest that the temperature experienced by grape flowers during bloom time impacts fruit set and subsequent seed and berry development. Suboptimal temperatures not only reduce the proportion of flowers that set fruit but also limit the sink strength of the berries that do develop after fruit set. Shoot vigor and maturation, and leaf physiology, on the other hand, may be rather insensitive to temperature-induced changes in reproductive development.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3