Analysis of WRKY Resistance Gene Family in Boehmeria nivea (L.) Gaudich: Crosstalk Mechanisms of Secondary Cell Wall Thickening and Cadmium Stress

Author:

Feng Xinkang,Abubakar Aminu Shehu,Yu Chunming,Zhu Aiguo,Chen Jikang,Chen Kunmei,Gao Gang,Wang Xiaofei,Mou Pan,Shao Deyi,Chen Ping

Abstract

A total of 60 WRKY family genes of ramie were identified in the ramie. The genes were unevenly distributed across 14 chromosomes in the specie and highly concentrated (72%) in the distal telomeric region. Phylogenetic analysis placed these genes into seven distinct subfamilies groups: I, II (a, b, c, d, e), and III, with group IIc containing only the variant of heptapetide sequence (WRKYGKK). Segmental duplication events (41.7%) was found to be the main driver of BnGWRKY evolution. Thirty eight from among the genes showed collinear relationships with WRKY genes from Arabidopsis thaliana, Cannabis sativa, Oryza sativa, and Zea mays. The number and density of stress and hormone responsives cis-acting elements were comparably higher than other elements, with abundant ARE and rare LTR cis-acting elements indicating the long-standing adaptability of ramie to its natural environment. GO and KEGG enrichment analysis of the WRKY target genes revealed their involvement in response to stimuli, immune system processes, transporter protein activity and antioxidant activity. Expression analysis show that most WRKYs were activated by the cadmium stress, more especially the BnGWRKY2, BnGWRKY15, BnGWRKY20, BnGWRKY50 and BnGWRKY58. Combining transcriptome, orthologous gene relationships and qPCR result, we established the possible involvement of BnGWRKY50 and BnGWRKY58 in crosstalk mechanism between secondary cell wall thickening and Cd2+ stress. This provided information into the role of BnGWRKY proteins in ramie secondary wall development and cadmium stress response to, and could serve as basis for improvement of the ramie.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3