Insights into the regulation of energy metabolism during the seed-to-seedling transition in marine angiosperm Zostera marina L.: Integrated metabolomic and transcriptomic analysis

Author:

Zhu Meiling,Zang Yu,Zhang Xuelei,Shang Shuai,Xue Song,Chen Jun,Tang Xuexi

Abstract

Seed development is a crucial phase in the life cycle of seed-propagated plants. As the only group of angiosperms that evolved from terrestrial plants to complete their life cycle submerged in marine environments, the mechanisms underlying seed development in seagrasses are still largely unknown. In the present study, we attempted to combine transcriptomic, metabolomic, and physiological data to comprehensively analyze the molecular mechanism that regulates energy metabolism in Zostera marina seeds at the four major developmental stages. Our results demonstrated that seed metabolism was reprogrammed with significant alteration of starch and sucrose metabolism, glycolysis, the tricarboxylic acid cycle (TCA cycle), and the pentose phosphate pathway during the transition from seed formation to seedling establishment. The interconversion of starch and sugar provided energy storage substances in mature seeds and further acted as energy sources to support seed germination and seedling growth. The glycolysis pathway was active during Z. marina germination and seedling establishment, which provided pyruvate for TCA cycle by decomposing soluble sugar. Notably, the biological processes of glycolysis were severely inhibited during Z. marina seed maturation may have a positive effect on seed germination, maintaining a low level of metabolic activity during seed maturation to preserve seed viability. Increased acetyl-CoA and ATP contents were accompanied with the higher TCA cycle activity during seed germination and seedling establishment, indicating that the accumulations of precursor and intermediates metabolite that can strengthen the TCA cycle and facilitate energy supply for Z. marina seed germination and seedling growth. The large amount of oxidatively generated sugar phosphate promotes fructose 1,6-bisphosphate synthesis to feed back to glycolysis during seed germination, indicating that the pentose phosphate pathway not only provides energy for germination, but also complements the glycolytic pathway. Collectively, our findings suggest these energy metabolism pathways cooperate with each other in the process of seed transformation from maturity to seedling establishment, transforming seed from storage tissue to highly active metabolic tissue to meet the energy requirement seed development. These findings provide insights into the roles of the energy metabolism pathway in the complete developmental process of Z. marina seeds from different perspectives, which could facilitate habitat restoration of Z. marina meadows via seeds.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3