Quantitative High-Throughput, Real-Time Bioassay for Plant Pathogen Growth in vivo

Author:

Zhang Chunqiu,Mansfeld Ben N.,Lin Ying-Chen,Grumet Rebecca

Abstract

Effective assessment of pathogen growth can facilitate screening for disease resistance, mapping of resistance loci, testing efficacy of control measures, or elucidation of fundamental host-pathogen interactions. Current methods are often limited by subjective assessments, inability to detect pathogen growth prior to appearance of symptoms, destructive sampling, or limited capacity for replication and quantitative analysis. In this work we sought to develop a real-time, in vivo, high-throughput assay that would allow for quantification of pathogen growth. To establish such a system, we worked with the broad host-range, highly destructive, soil-borne oomycete pathogen, Phytophthora capsici. We used an isolate expressing red fluorescence protein (RFP) to establish a microtiter plate, real-time assay to quantify pathogen growth in live tissue. The system was successfully used to monitor P. capsici growth in planta on cucumber (Cucumis sativus) fruit and pepper (Capsicum annuum) leaf samples in relation to different levels of host susceptibility. These results demonstrate usefulness of the method in different species and tissue types, allowing for highly replicated, quantitative time-course measurements of pathogen growth in vivo. Analyses of pathogen growth during initial stages of infection preceding symptom development show the importance of very early stages of infection in determining disease outcome, and provide insight into points of inhibition of pathogen growth in different resistance systems.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3