Adapting to the projected epidemics of Fusarium head blight of wheat in Korea under climate change scenarios

Author:

Jung Jin-Yong,Kim Jin-Hee,Baek Minju,Cho Chuloh,Cho Jaepil,Kim Junhwan,Pavan Willingthon,Kim Kwang-Hyung

Abstract

Fusarium head blight (FHB) of wheat, mainly caused by Fusarium graminearum Schwabe, is an emerging threat to wheat production in Korea under a changing climate. The disease occurrence and accumulation of associated trichothecene mycotoxins in wheat kernels strongly coincide with warm and wet environments during flowering. Recently, the International Panel for Climate Change released the 6th Coupled Model Intercomparison Project (CMIP6) climate change scenarios with shared socioeconomic pathways (SSPs). In this study, we adopted GIBSIM, an existing mechanistic model developed in Brazil to estimate the risk infection index of wheat FHB, to simulate the potential FHB epidemics in Korea using the SSP245 and SSP585 scenarios of CMIP6. The GIBSIM model simulates FHB infection risk from airborne inoculum density and infection frequency using temperature, precipitation, and relative humidity during the flowering period. First, wheat heading dates, during which GIBSIM runs, were predicted over suitable areas of winter wheat cultivation using a crop development rate model for wheat phenology and downscaled SSP scenarios. Second, an integrated model combining all results of wheat suitability, heading dates, and FHB infection risks from the SSP scenarios showed a gradual increase in FHB epidemics towards 2100, with different temporal and spatial patterns of varying magnitudes depending on the scenarios. These results indicate that proactive management strategies need to be seriously considered in the near future to minimize the potential impacts of the FHB epidemic under climate change in Korea. Therefore, available wheat cultivars with early or late heading dates were used in the model simulations as a realistic adaptation measure. As a result, wheat cultivars with early heading dates showed significant decreases in FHB epidemics in future periods, emphasizing the importance of effective adaptation measures against the projected increase in FHB epidemics in Korea under climate change.

Funder

National Research Foundation of Korea

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3