Detection of tomato water stress based on terahertz spectroscopy

Author:

Zhang Yixue,Wang Xinzhong,Wang Yafei,Hu Lian,Wang Pei

Abstract

China’s tomato cultivation area is nearly 15 thousand km2, and its annual tomato output is about 55 million tons, accounting for 7% of its total vegetable production. Because of the high drought sensitivity of tomatoes, water stress inhibits their nutrient uptake, leading to a decrease in tomato quality and yield. Therefore, the rapid, accurate and non-destructive detection of water status is important for scientifically and effectively managing tomato water and fertilizer, improving the efficiency of water resource utilization, and safeguarding tomato yield and quality. Because of the extreme sensitivity of terahertz spectroscopy to water, we proposed a tomato leaf moisture detection method based on terahertz spectroscopy and made a preliminary exploration of the relationship between tomato water stress and terahertz spectral data. Tomato plants were grown at four levels of water stress. Fresh tomato leaves were sampled at fruit set, moisture content was calculated, and spectral data were collected through a terahertz time-domain spectroscope. The raw spectral data were smoothed using the Savitzky–Golay algorithm to reduce interference and noise. Then the data were divided by the Kennard–Stone algorithm and the sample set was partitioned based on the joint X-Y distance (SPXY) algorithm into a calibration set and a prediction set at a ratio of 3:1. SPXY was found to be the better approach for sample division. On this basis, the stability competitive adaptive re-weighted sampling algorithm was used to extract the feature frequency bands of moisture content, and a multiple linear regression model of leaf moisture content was established under the single dimensions of power, absorbance and transmittance. The absorbance model was the best, with a prediction set correlation coefficient of 0.9145 and a root mean square error of 0.1199. To further improve the modeling accuracy, we used a support vector machine (SVM) to establish a tomato moisture fusion prediction model based on the fusion of three-dimensional terahertz feature frequency bands. As water stress intensified, the power and absorbance spectral values both declined, and both were significantly and negatively correlated with leaf moisture content. The transmittance spectral value increased gradually with the intensification of water stress, showing a significant positive correlation. The SVM-based three-dimensional fusion prediction model showed a prediction set correlation coefficient of 0.9792 and a root mean square error of 0.0531, indicating that it outperformed the three single-dimensional models. Hence, terahertz spectroscopy can be applied to the detection of tomato leaf moisture content and provides a reference for tomato moisture detection.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference23 articles.

1. Introducing terahertz technology into plant biology. A novel method to monitor changes in leaf water status;Breitenstein;J. Appl. Bot. Food Quality.,2011

2. Study on the spectral characteristics of plant growth regulators based on the structure difference of terahertz metamaterial sensor;Du;IEEE SENSORS J.,2022

3. Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments;Fitzgerald;Precis. Agric.,2006

4. Determination of leaf water content from terahertz time-domain spectroscopic data;Gente;J. Infrared Millimeter&Terahertz Waves.,2013

5. Contactless water status measurements on plants at 35 GHz;Gente;J. Infrared Millimeter&Terahertz Waves.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3