The effects of landscape change on habitat quality in arid desert areas based on future scenarios: Tarim River Basin as a case study

Author:

Zhang Tianju,Chen Yaning

Abstract

Human activities have caused spatiotemporal patterns of land use and land cover (LULC) change. The LULC change has directly affected habitat quality (HQ) and ecosystem functions. Assessing, simulating, and predicting spatiotemporal changes and future trends under different scenarios of LULC-influenced HQ is beneficial to land use planners and decision-makers, helping them to formulate plans in a sustainable and responsible way. This study assesses and simulates the HQ of the Tarim River Basin (TRB) using the future land use simulation model (FLUS), the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model, and partial least squares regression (PLSR). Since 2000, the TRB has experienced a declining trend in HQ from 0.449 to 0.444, especially in the lower elevations (740-2000m) and on sloped land (<10°). The decline will continue unless effective and sustainable plans are implemented to halt it. Agricultural and settlement areas have a lower HQ and a higher degree of habitat degradation than native habitats. This shows that the expansion of oasis agriculture (with an annual growth rate of 372.17 km2) and settlements (with an annual growth rate of 23.50 km2) has caused a decline in native habitat and subsequent habitat fragmentation. In other words, changes in LULC have caused a decline in the HQ. Moreover, there is a significant negative correlation between HQ and urbanization rate (p<0.01), and the PLSR also indicate that number of patches (NP), area-weighted mean fractal dimension index (FRAC_AM), percentage of landscape (PLAND), and largest patch index (LPI) were also important contributors to worsening the HQ. Therefore, the TRB urgently needs appropriate strategies to preserve its natural habitats into the future, based on the ecological priority scenario (EPS) and harmonious development scenario (HDS), which can help to maintain a high-quality habitat.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3