A reinterpretation of the gap fraction of tree crowns from the perspectives of computer graphics and porous media theory

Author:

Zhu Yunfeng,Li Dongni,Fan Jiangchuan,Zhang Huaiqing,Eichhorn Markus P.,Wang Xiangjun,Yun Ting

Abstract

The gap fraction (GF) of vegetative canopies is an important property related to the contained bulk of reproductive elements and woody facets within the tree crown volume. This work was developed from the perspectives of porous media theory and computer graphics techniques, considering the vegetative elements in the canopy as a solid matrix and treating the gaps between them as pores to guide volume-based GFvol calculations. Woody components and individual leaves were extracted from terrestrial laser scanning data. The concept of equivalent leaf thickness describing the degrees of leaf curling and drooping was proposed to construct hexagonal prisms properly enclosing the scanned points of each leaf, and cylinder models were adopted to fit each branch segment, enabling the calculation of the equivalent leaf and branch volumes within the crown. Finally, the volume-based GFvol of the tree crown following the definition of the void fraction in porous media theory was calculated as one minus the ratio of the total plant leaf and branch volume to the canopy volume. This approach was tested on five tree species and a forest plot with variable canopy architecture, yielding an estimated maximum volume-based GFvol of 0.985 for a small crepe myrtle and a minimal volume-based GFvol of 0.953 for a sakura tree. The 3D morphology of each compositional element in the tree canopy was geometrically defined and the canopy was considered a porous structure to conduct GFvol calculations based on multidisciplinary theory.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Frontiers Media SA

Subject

Plant Science

Reference63 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3