Response mechanisms of 3 typical plants nitrogen and phosphorus nutrient cycling to nitrogen deposition in temperate meadow grasslands

Author:

Zhang Yang,Zhang Qing,Yang Wenjun,Zhang Yan,Wang Ning,Fan Peixian,You Chao,Yu Linqian,Gao Qun,Wang Hui,Zheng Peiming,Wang Renqing

Abstract

The increase of nitrogen (N) deposition and the diversity of its components lead to significant changes in the structure and function of temperate meadow steppe, which could affect plant nutrient uptake, nutrient resorption and litter decomposition, thus affecting the biogeochemical cycle process. The distribution and metabolism of nitrogen and phosphorus in plants determine the growth process and productivity of plants. Plant nutrient uptake, nutrient resorption and litter decomposition play an important role in the nutrient cycling process of ecosystem. This study closely combined these three processes to carry out experiments with different nitrogen dosages and types, and systematically explored the response of nitrogen and phosphorus nutrient cycling to nitrogen deposition. The results showed that nitrogen deposition can greatly affect ecosystem nutrient cycle of nitrogen and phosphorus. Firstly, Nitrogen deposition has significant effect on plant nutrient uptake. Nitrogen uptake of stems and leaves increased with the increase of nitrogen addition dosage, while phosphorus uptake of stems and leaves showed a downward trend or no significant effect. Besides, nitrogen addition type had a significant effect on nitrogen and phosphorus content of stems. Secondly, Nitrogen addition dosage had a significant effect on plant nutrient resorption, while nitrogen addition type had no significant effect on it. Thirdly, nitrogen deposition has significant effect on litter decomposition. With the increase of nitrogen addition dosage, the initial nitrogen content of litters increased and the decomposition rate of litters accelerated. Nitrogen application type had significant effect on stem litter decomposition. These results indicated that nitrogen deposition significantly affects plant nutrient cycling, and thus affects the structure and function of grassland ecosystem.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3