Leaf stomatal traits rather than anatomical traits regulate gross primary productivity of moso bamboo (Phyllostachys edulis) stands

Author:

Guo Wen,Cherubini Paolo,Zhang Jian,Li Mai-He,Qi Lianghua

Abstract

Leaf stomatal and anatomical traits strongly influence plant productivity. Understanding the environmental adaptation mechanisms of leaf stomatal and anatomical traits and their relationship with ecosystem productivity is essential to better understand and predict the long-term adaptation strategies to climate change of moso bamboo forests. Here, we selected 6 sites within the moso bamboo distribution area, measured 3 leaf stomatal traits and 10 leaf anatomical traits of unmanaged moso bamboo stands. We explored the spatial variation characteristics of these traits and their response to environmental changes, assessed the relationships among these traits at regional scales through network analysis, and tested the direct and indirect effects of environmental, leaf stomatal and anatomical traits on gross primary productivity (GPP) of bamboo stands using structural equation modeling (SEM). The results showed that both climate and soil factors significantly affected leaf stomatal and anatomical traits of moso bamboo. Solar radiation (SR) and mean annual precipitation (MAP) out of the climatic factors were the key drivers of variation in leaf stomatal and anatomical traits, respectively. Soil moisture and nutrients out of the soil properties significantly affected both leaf stomatal and anatomical traits of moso bamboo. Network analysis further indicated that there was a significant correlation between leaf stomata and anatomical traits. Stomatal size (SS) showed the highest centrality value at the regional scale, indicating that it plays a key role in adjusting the adaptation of plants to external environmental conditions. SEM analysis showed that environment did not directly but indirectly affect GPP via stomatal performance. The environment explained 53.3% and 39.2% of the variation in leaf stomatal and anatomical traits, respectively, and leaf stomatal traits explained 20.8% of the regional variation in GPP. Our results demonstrate a direct effect of leaf stomatal traits rather than leaf anatomical traits on bamboo ecosystem productivity, which provides new insights into model predictions of bamboo forests under global climate change.

Funder

International Centre for Bamboo and Rattan

Chinese Government Scholarship

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3