Understanding the Role of Gibberellic Acid and Paclobutrazol in Terminal Heat Stress Tolerance in Wheat

Author:

Nagar Shivani,Singh V. P.,Arora Ajay,Dhakar Rajkumar,Singh Neera,Singh G. P.,Meena Shashi,Kumar Sudhir,Shiv Ramakrishnan R.

Abstract

Understanding the physiological mechanism of tolerance under stress conditions is an imperative aspect of the crop improvement programme. The role of plant hormones is well-established in abiotic stress tolerance. However, the information on the role of gibberellic acid (GA) in abiotic stress tolerance in late sown wheat is still not thoroughly explored. Thus, we aimed to investigate the role of endogenous GA3 level in stress tolerance in contrasting wheat cultivars, viz., temperature-tolerant (HD 2643 and DBW 14) and susceptible (HD 2189 and HD 2833) cultivars under timely and late sown conditions. We created the variation in endogenous GA3 level by exogenous spray of GA3 and its biosynthesis inhibitor paclobutrazol (PBZ). Tolerant genotypes had higher antioxidant enzyme activity, membrane stability, and photosynthesis rate, lower lipid peroxidase activity, and better growth and yield traits under late sown conditions attributed to H2O2 content. Application of PBZ escalated antioxidant enzymes activity and photosynthesis rate, and reduced the lipid peroxidation and ion leakage in stress, leading to improved thermotolerance. GA3 had a non-significant effect on antioxidant enzyme activity, lipid peroxidation, and membrane stability. However, GA3 application increased the test weight in HD 2643 and HD 2833 under timely and late sown conditions. GA3 upregulated GA biosynthesis and degradation pathway genes, and PBZ downregulated kaurene oxidase and GA2ox gene expression. GA3 also upregulated the expression of the cell expansins gene under both timely and late sown conditions. Exogenous GA3 did not increase thermotolerance but positively affected test weight and cell expansins gene expression. No direct relationship existed between endogenous GA3 content and stress tolerance traits, indicating that PBZ could have conferred thermotolerance through an alternative mechanism instead of inhibiting GA3biosynthesis.

Funder

Indian Agricultural Research Institute

Publisher

Frontiers Media SA

Subject

Plant Science

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3