Antioxidant processes involving epicatechin decreased symptoms of pine wilt disease

Author:

Zhang Ruizhi,Wang Jianan,Xia Rui,Li Danlei,Wang Feng

Abstract

Since the pine wood nematode (PWN, Bursaphelenchus xylophilus) invasion of Northeast China, both symptomatic and asymptomatic PWN carriers have been found. Asymptomatic PWN carriers, which are more dangerous than symptomatic carriers, constitute a source of infection in the following spring. The simultaneous presence of symptomatic and asymptomatic PWN carriers indicates that Pinus koraiensis has different tolerance levels to PWN. In this study, validity of susceptibility testing discovered differential types of P. koraiensis including Latent Reservoirs, Low Susceptibles, High Susceptibles and Bell Ringers. Among those types, the Low Susceptibles and Latent Reservoirs were asymptomatic PWN carriers, and Latent Reservoirs were the most dangerous. Transcriptome and metabolomic data showed that 5 genes (3 ans and 2 anr gene) involved in the epicatechin (EC) synthesis pathway were significantly upregulated, which increased the content of EC antioxidants in Latent Reservoirs. Hydrogen peroxide (H2O2) staining and content determination showed that the hypersensitive response (HR) and H2O2, which functions as a signaling molecule in systemic acquired resistance, decreased in Latent Reservoirs. However, low contents of EC and high contents of H2O2 were found in the High Susceptibles of P. koraiensis. RT-PCR results showed that the expression of ans and anr was upregulated together only in Latent Reservoirs. These results show that the susceptibility of P. koraiensis to PWN differed among different individuals, although no resistant individuals were found. Latent Reservoirs, in which more PWNs resided without visible symptoms via prolonged incubation period, inhibited the symptoms caused by H2O2 because of increased contents of the EC antioxidants.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3