Seed Functional Traits Provide Support for Ecological Restoration and ex situ Conservation in the Threatened Amazon Ironstone Outcrop Flora

Author:

Zanetti Marcilio,Dayrell Roberta L. C.,Wardil Mariana V.,Damasceno Alexandre,Fernandes Tais,Castilho Alexandre,Santos Fernando M. G.,Silveira Fernando A. O.

Abstract

Cangas (ironstone outcrops) host a specialized flora, characterized by high degree of edaphic endemism and an apparent lack of natural history knowledge of its flora. Due to intense pressure from iron ore mining this ecosystem is under threat and in need of restoration. We studied seed functional traits that are relevant for restoration, translocation andex situconservation in 48 species from cangas in eastern Amazon. Were determined the thermal niche breadth, classified seed dormancy and determined methods to overcome it, determined the effect of seed storage on germination, tested the association between germination traits and functional groups, and tested whether seed traits are phylogenetically conserved. We found a broad interspecific variation in most seed traits, except for seed water content. Large interspecific variation in the temperature niche breadth was found among the studied species, but only four species, showed optimum germination at high temperatures of 35–40°C, despite high temperatures under natural conditions. Only 35% of the studied species produced dormant seeds. Mechanical scarification was effective in overcoming physical dormancy and application of gibberellic acid was effective in overcoming physiological dormancy in five species. For the 29 species that seeds were stored for 24 months, 76% showed decreases in the germination percentage. The weak association between germination traits and life-history traits indicate that no particular plant functional type requires specific methods for seed-based translocations. Exceptions were the lianas which showed relatively larger seeds compared to the other growth-forms. Dormancy was the only trait strongly related to phylogeny, suggesting that phylogenetic relatedness may not be a good predictor of regeneration from seeds in cangas. Our study provides support to better manage seed sourcing, use, storage and enhancement techniques with expected reduced costs and increased seedling establishment success.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3