Author:
Ahmad Sagheer,Chen Guizhen,Huang Jie,Yang Kang,Hao Yang,Zhou Yuzhen,Zhao Kai,Lan Siren,Liu Zhongjian,Peng Donghui
Abstract
Biological control is a safe way of combating plant diseases using the living organisms. For the precise use of microbial biological control agents, the genetic information on the hypersensitive response (HR), and defense-related gene induction pathways of plants are necessary. Orchids are the most prominent stakeholders of floriculture industry, and owing to their long-awaited flowering pattern, disease control is imperative to allow healthy vegetative growth that spans more than 2 years in most of the orchids. We observed leaf-less flowering in three orchid species (Cymbidium ensifolium, C. goeringii and C. sinense). Using these materials as reference, we performed transcriptome profiling for healthy leaves from non-infected plants to identify genes specifically involved in plant-pathogen interaction pathway. For this pathway, a total of 253 differentially expressed genes (DEGs) were identified in C. ensifolium, 189 DEGs were identified in C. goeringii and 119 DEGs were found in C. sinense. These DEGs were mainly related to bacterial secretion systems, FLS2, CNGCs and EFR, regulating HR, stomatal closure and defense-related gene induction. FLS2 (LRR receptor-like serine/threonine kinase) contained the highest number of DEGs among three orchid species, followed by calmodulin. Highly upregulated gene sets were found in C. sinense as compared to other species. The great deal of DEGs, mainly the FLS2 and EFR families, related to defense and immunity responses can effectively direct the future of biological control of diseases for orchids.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献