Mercury-Tolerant Ensifer medicae Strains Display High Mercuric Reductase Activity and a Protective Effect on Nitrogen Fixation in Medicago truncatula Nodules Under Mercury Stress

Author:

Arregui Gabriela,Hipólito Pablo,Pallol Beatriz,Lara-Dampier Victoria,García-Rodríguez Diego,Varela Higinio P.,Tavakoli Zaniani Parinaz,Balomenos Dimitrios,Paape Timothy,Coba de la Peña Teodoro,Lucas M. Mercedes,Pueyo José J.

Abstract

Mercury (Hg) is extremely toxic for all living organisms. Hg-tolerant symbiotic rhizobia have the potential to increase legume tolerance, and to our knowledge, the mechanisms underlying Hg tolerance in rhizobia have not been investigated to date. Rhizobial strains of Ensifer medicae, Rhizobium leguminosarum bv. trifolii and Bradyrhizobium canariense previously isolated from severely Hg-contaminated soils showed different levels of Hg tolerance. The ability of the strains to reduce mercury Hg2+ to Hg0, a volatile and less toxic form of mercury, was assessed using a Hg volatilization assay. In general, tolerant strains displayed high mercuric reductase activity, which appeared to be inducible in some strains when grown at a sub-lethal HgCl2 concentration. A strong correlation between Hg tolerance and mercuric reductase activity was observed for E. medicae strains, whereas this was not the case for the B. canariense strains, suggesting that additional Hg tolerance mechanisms could be playing a role in B. canariense. Transcript abundance from merA, the gene that encodes mercuric reductase, was quantified in tolerant and sensitive E. medicae and R. leguminosarum strains. Tolerant strains presented higher merA expression than sensitive ones, and an increase in transcript abundance was observed for some strains when bacteria were grown in the presence of a sub-lethal HgCl2 concentration. These results suggest a regulation of mercuric reductase in rhizobia. Expression of merA genes and mercuric reductase activity were confirmed in Medicago truncatula nodules formed by a sensitive or a tolerant E. medicae strain. Transcript accumulation in nodules formed by the tolerant strain increased when Hg stress was applied, while a significant decrease in expression occurred upon stress application in nodules formed by the Hg-sensitive strain. The effect of Hg stress on nitrogen fixation was evaluated, and in our experimental conditions, nitrogenase activity was not affected in nodules formed by the tolerant strain, while a significant decrease in activity was observed in nodules elicited by the Hg-sensitive bacteria. Our results suggest that the combination of tolerant legumes with tolerant rhizobia constitutes a potentially powerful tool in the bioremediation of Hg-contaminated soils.

Funder

Agencia Estatal de Investigación

Consejo Superior de Investigaciones Científicas

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3