Regulatory and functional divergence among members of Ibβfruct2, a sweet potato vacuolar invertase gene controlling starch and glucose content

Author:

Zhang Kai,Wu Zhengdan,Wu Xuli,Han Haohao,Ju Xisan,Fan Yonghai,Yang Chaobin,Tang Daobin,Cao Qinghe,Wang Jichun,Lv Changwen

Abstract

Sweet potato [Ipomoea batatas (L.) Lam.] is an important food and industrial crop. Its storage root is rich in starch, which is present in the form of granules and represents the principal storage carbohydrate in plants. Starch content is an important trait of sweet potato controlling the quality and yield of industrial products. Vacuolar invertase encoding gene Ibβfruct2 was supposed to be a key regulator of starch content in sweet potato, but its function and regulation were unclear. In this study, three Ibβfruct2 gene members were detected. Their promoters displayed differences in sequence, activity, and cis-regulatory elements and might interact with different transcription factors, indicating that the three Ibβfruct2 family members are governed by different regulatory mechanisms at the transcription level. Among them, we found that only Ibβfruct2-1 show a high expression level and promoter activity, and encodes a protein with invertase activity, and the conserved domains and three conserved motifs NDPNG, RDP, and WEC are critical to this activity. Only two and six amino acid residue variations were detected in sequences of proteins encoded by Ibβfruct2-2 and Ibβfruct2-3, respectively, compared with Ibβfruct2-1; although not within key motifs, these variations affected protein structure and affinities for the catalytic substrate, resulting in functional deficiency and low activity. Heterologous expression of Ibβfruct2-1 in Arabidopsis decreased starch content but increased glucose content in leaves, indicating Ibβfruct2-1 was a negative regulator of starch content. These findings represent an important advance in understanding the regulatory and functional divergence among duplicated genes in sweet potato, and provide critical information for functional studies and utilization of these genes in genetic improvement.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3