Comparative time-course transcriptome analysis of two contrasting alfalfa (Medicago sativa L.) genotypes reveals tolerance mechanisms to salt stress

Author:

Ma Dongmei,Cai Jinjun,Ma Qiaoli,Wang Wenjing,Zhao Lijuan,Li Jiawen,Su Lina

Abstract

Salt stress is a major abiotic stress affecting plant growth and crop yield. For the successful cultivation of alfalfa (Medicago sativa L.), a key legume forage, in saline-affected areas, it’s essential to explore genetic modifications to improve salt-tolerance.Transcriptome assay of two comparative alfalfa genotypes, Adina and Zhaodong, following a 4 h and 8 h’s 300 mM NaCl treatment was conducted in this study in order to investigate the molecular mechanism in alfalfa under salt stress conditions. Results showed that we obtained 875,023,571 transcripts and 662,765,594 unigenes were abtained from the sequenced libraries, and 520,091 assembled unigenes were annotated in at least one database. Among them, we identified 1,636 differentially expression genes (DEGs) in Adina, of which 1,426 were up-regulated and 210 down-regulated, and 1,295 DEGs in Zhaodong, of which 565 were up-regulated and 730 down-regulated. GO annotations and KEGG pathway enrichments of the DEGs based on RNA-seq data indicated that DEGs were involved in (1) ion and membrane homeostasis, including ABC transporter, CLC, NCX, and NHX; (2) Ca2+ sensing and transduction, including BK channel, EF-hand domain, and calmodulin binding protein; (3) phytohormone signaling and regulation, including TPR, FBP, LRR, and PP2C; (4) transcription factors, including zinc finger proteins, YABBY, and SBP-box; (5) antioxidation process, including GST, PYROX, and ALDH; (6) post-translational modification, including UCH, ubiquitin family, GT, MT and SOT. The functional roles of DEGs could explain the variations in salt tolerance performance observed between the two alfalfa genotypes Adina and Zhaodong. Our study widens the understanding of the sophisticated molecular response and tolerance mechanism to salt stress, providing novel insights on candidate genes and pathways for genetic modification involved in salt stress adaptation in alfalfa.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3