Author:
Moggia Claudia,Bravo Manuel A.,Baettig Ricardo,Valdés Marcelo,Romero-Bravo Sebastián,Zúñiga Mauricio,Cornejo Jorge,Gosetti Fabio,Ballabio Davide,Cabeza Ricardo A.,Beaudry Randolph,Lobos Gustavo A.
Abstract
Bitter pit (BP) is one of the most relevant post-harvest disorders for apple industry worldwide, which is often related to calcium (Ca) deficiency at the calyx end of the fruit. Its occurrence takes place along with an imbalance with other minerals, such as potassium (K). Although the K/Ca ratio is considered a valuable indicator of BP, a high variability in the levels of these elements occurs within the fruit, between fruits of the same plant, and between plants and orchards. Prediction systems based on the content of elements in fruit have a high variability because they are determined in samples composed of various fruits. With X-ray fluorescence (XRF) spectrometry, it is possible to characterize non-destructively the signal intensity for several mineral elements at a given position in individual fruit and thus, the complete signal of the mineral composition can be used to perform a predictive model to determine the incidence of bitter pit. Therefore, it was hypothesized that using a multivariate modeling approach, other elements beyond the K and Ca could be found that could improve the current clutter prediction capability. Two studies were carried out: on the first one an experiment was conducted to determine the K/Ca and the whole spectrum using XRF of a balanced sample of affected and non-affected ‘Granny Smith’ apples. On the second study apples of three cultivars (‘Granny Smith’, ‘Brookfield’ and ‘Fuji’), were harvested from two commercial orchards to evaluate the use of XRF to predict BP. With data from the first study a multivariate classification system was trained (balanced database of healthy and BP fruit, consisting in 176 from each group) and then the model was applied on the second study to fruit from two orchards with a history of BP. Results show that when dimensionality reduction was performed on the XRF spectra (1.5 - 8 KeV) of ‘Granny Smith’ apples, comparing fruit with and without BP, along with K and Ca, four other elements (i.e., Cl, Si, P, and S) were found to be deterministic. However, the PCA revealed that the classification between samples (BP vs. non-BP fruit) was not possible by univariate analysis (individual elements or the K/Ca ratio).Therefore, a multivariate classification approach was applied, and the classification measures (sensitivity, specificity, and balanced precision) of the PLS-DA models for all cultivars evaluated (‘Granny Smith’, ‘Fuji’ and ‘Brookfield’) on the full training samples and with both validation procedures (Venetian and Monte Carlo), ranged from 0.76 to 0.92. The results of this work indicate that using this technology at the individual fruit level is essential to understand the factors that determine this disorder and can improve BP prediction of intact fruit.
Funder
Fondo de Fomento al Desarrollo Científico y Tecnológico
Michigan State University
National Institute of Food and Agriculture
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献