Effect and Response of Quercus ilex subsp. ballota [Desf.] Samp. Seedlings From Three Contrasting Andalusian Populations to Individual and Combined Phytophthora cinnamomi and Drought Stresses

Author:

San-Eufrasio Bonoso,Castillejo María Ángeles,Labella-Ortega Mónica,Ruiz-Gómez Francisco J.,Navarro-Cerrillo Rafael M.,Tienda-Parrilla Marta,Jorrín-Novo Jesús V.,Rey María-Dolores

Abstract

Quercus ilex L. is the dominant species in the Mediterranean forest and agrosilvopastoral ecosystem “dehesa.” Currently, this forest species is threatened by natural and anthropogenic agents, especially by the decline syndrome, which is caused by Phytophthora cinnamomi and drought periods. Although the morphological and physiological responses of Q. ilex to combined stress (P. cinnamomi and drought) have been examined already, little is known at the molecular level. In this study, we studied the effect and response of 8-month seedlings from three contrasting Andalusian populations (Seville [Se], Granada [Gr], and Almeria [Al]) to the individual and combined stresses of P. cinnamomi and drought from morphological, physiological, biochemical, and proteomics data. Whereas, seedling damage (leaf chlorosis and necrosis) and mortality were greater under the combined stresses in the three populations, the effect of each individual stress was population-dependent. Resilient individuals were found in all the populations at different percentages. The decrease in leaf chlorophyll fluorescence, photosynthetic activity, and stomatal conductance observed in undamaged seedlings was greater in the presence of both stresses, the three populations responding similarly to drought and P. cinnamomi. Biochemical and proteomic analyses of undamaged seedlings from the two most markedly contrasting populations (Se and Al) revealed the absence of significant differences in the contents in photosynthetic pigments, amino acids, and phenolics among treatments. The Se and Al populations exhibited changes in protein profile in response to the different treatments, with 83 variable proteins in the former population and 223 in the latter. Variable proteins belonged to 16 different functional groups, the best represented among which were protein folding, sorting and degradation, carbohydrate, amino acid, and secondary metabolism, photosynthesis, and ROS scavenging. While photosynthetic proteins were mainly downaccumulated, those of stress-responsive were upaccumulated. Although no treatment-specific response was observed in any functional group, differences in abundance were especially marked under the combined stresses. The following variable proteins are proposed as putative markers for resilience in Q. ilex, namely, aldehyde dehydrogenase, glucose-6-phosphate isomerase, 50S ribosomal protein L5, and α-1,4-glucan-protein synthase [UDP-forming].

Funder

Ministerio de Economía y Competitividad

Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía

Publisher

Frontiers Media SA

Subject

Plant Science

Reference102 articles.

1. Competitive inhibition of spinach leaf phosphoglucose isomerase isoenzymes by erythrose 4-phosphate;Backhausen;Plant Sci.,1997

2. Drought and salt tolerance in plants;Bartels;CRC Crit. Rev. Plant Sci.,2005

3. Chlorophyll fluorescence as a tool in photosynthesis research;Bolhàr-Nordenkampf,1993

4. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding;Bradford;Anal. Biochem.,1976

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3