Detection of meteorological influence on bread wheat quality in Hebei province, China based on the gradient boosting decision tree

Author:

Zhang Xinyue,Chen Keyao,Li Kuo

Abstract

Wheat grain quality is equivalent to grain yield in terms of ensuring food security under climate change but has received less attention. Identifying critical meteorological conditions in key phenological periods to account for the variability in grain protein content (GPC) can provide insight into linkages between climate change and wheat quality. The wheat GPC data from different counties of Hebei Province, China during 2006-2018 and corresponding observational meteorological data were used in our study. Through a fitted gradient boosting decision tree model, latitude of the study area, accumulated sunlight hours during the growth season, accumulated temperature and averaged relative humidity from filling to maturity were suggested as the most relevant influencing variables. The relationship between GPC and latitude was distinguished between areas north and south of 38.0° N. GPC decreased with the increasing latitude in areas south of 38.0° N, where at least accumulated temperatures of 515°C from filling to maturity were preferred to maintain high GPC. Besides, averaged relative humidity during the same phenological period exceeding 59% could generate an extra benefit to GPC here. However, GPC increased with increasing latitude in areas north of 38.0° N and was mainly attributed to more than 1500 sunlight hours during the growth season. Our findings that different meteorological factors played a major role in deciding regional wheat quality provided a scientific basis for adopting better regional planning and developing adaptive strategies to minimize climate impacts.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

National Social Science Fund of China

Publisher

Frontiers Media SA

Subject

Plant Science

Reference41 articles.

1. Wheat and barley cultivars show plant traits acclimation and increase grain yield under simulated shade in Mediterranean conditions;Arenas-Corraliza;J. Agron. Crop Sci.,2021

2. Climate change impact and adaptation for wheat protein;Asseng;Global Change Biol.,2019

3. Quality traits performance of bread wheat genotypes under drought and heat stress conditions;Barutcular;Fresen. Environ. Bull.,2016

4. The protein chemistry of cereal grains;Békés,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3