GhLBDs Promote Callus Initiation and Act as Selectable Markers to Increase Transformation Efficiency

Author:

Wang Ye,Yuan Jiachen,Wei Xi,Chen Yanli,Chen Quanjia,Ge Xiaoyang

Abstract

Detached organs or differentiated tissues could form a mass of pluripotent cells termed as callus on an auxin-rich medium, the underlying molecular mechanism of which remains elusive in cotton. LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factor is a key regulator of plant cell totipotency/pluripotency, and a number of cotton GhLBDs with high-level differential expression during the callus induction process have been identified. Their overexpression in cotton calli fostered promotions in and callus induction without exogenous auxin. Expression analysis and histological observation using paraffin sectioning suggested that the first 72 h on culture is a key time point for callus initiation, whereby the GhLBDs showed high transcript abundance and enlarged calli that were rapidly developed from procambium and cambium. GhLBDs’ expression level could be precisely modulated by the gradient concentrations of exogenous auxin, whereas auxin transport inhibitor 2,3,5-triiodobenzoic acid could severely inhibit its expression. The LBD-mediated callus formation was also dependent on the expression levels of GhLBDs. Further, a β-estradiol-inducible promoter pER8 was used to drive GhLBD18-1 expression, which led to rapid callus proliferation, suggesting that pER8/GhLBD18-1 could be used as a selectable marker system to replace the existing antibiotic/herbicide-resistance selectable markers in plant transformation. Our study provides new insights for callus initiation regulatory mechanism and strategies for improving transformation efficiency in cotton.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3